
Functional renormalization group in the broken symmetry phase: momentum dependence and

two-parameter scaling of the self-energy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 075208

(http://iopscience.iop.org/0953-8984/20/7/075208)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 10:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/7
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 075208 (9pp) doi:10.1088/0953-8984/20/7/075208

Functional renormalization group in the
broken symmetry phase: momentum
dependence and two-parameter scaling of
the self-energy
Andreas Sinner, Nils Hasselmann and Peter Kopietz

Institut für Theoretische Physik, Universität Frankfurt, Max-von-Laue Strasse 1,
60438 Frankfurt, Germany

Received 12 September 2007, in final form 19 December 2007
Published 25 January 2008
Online at stacks.iop.org/JPhysCM/20/075208

Abstract
We include spontaneous symmetry breaking in the functional renormalization group equations
for the irreducible vertices of Ginzburg–Landau theories by augmenting these equations by a
flow equation for the order parameter, which is determined from the requirement that at each
renormalization group (RG) step the vertex with one external leg vanishes identically. Using
this strategy, we propose a simple truncation of the coupled RG flow equations for the vertices
in the broken symmetry phase of the Ising universality class in D dimensions. Our truncation
yields the full momentum dependence of the self-energy �(k) and interpolates between
lowest-order perturbation theory at large momenta k and the critical scaling regime for small k.
Close to the critical point, our method yields the self-energy in the scaling form
�(k) = k2

cσ
−(|k|ξ, |k|/kc), where ξ is the order parameter correlation length, kc is the

Ginzburg scale, and σ−(x, y) is a dimensionless two-parameter scaling function for the broken
symmetry phase which we calculate explicitly within our truncation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The functional renormalization group (FRG) was invented
by Wegner and Houghton [1] in the early days of the
renormalization group (RG) as a mathematically exact
formulation of the Wilsonian RG. In the past decade this
method has gained new attention. While there are several
equivalent formulations of the FRG involving different types
of generating functionals, in many cases it is advantageous
to formulate the FRG in terms of the generating functional
� of the one-particle irreducible vertices, which can be
obtained from the generating functional of the connected Green
functions via a Legendre transformation [2, 3]. Two different
strategies of solving the formally exact FRG equation for
the functional � have been developed: the first is based on
the combination of the local potential approximation (LPA)
with the derivative expansion [4, 5]. This approach has
been very successful in obtaining accurate results for critical
exponents [4–7] and is convenient for describing the broken
symmetry phase [8], because it is based on an expansion in

terms of invariant densities, which automatically fulfill all
symmetry requirements.

The other strategy, which was pioneered by Morris [3]
and has been preferentially used in the condensed matter
community to study non-relativistic fermions [9, 10], is based
on the expansion of � in powers of the fields, leading to an
infinite hierarchy of coupled integro-differential equations for
the one-particle irreducible vertices. This approach has the
advantage of providing information on the momentum and
frequency dependences of the vertices. However, there have
been only two conceptually different attempts to extend the
hierarchy of FRG flow equations for the vertices arising from
the field expansion into the broken symmetry phase. One
possibility is to include a small symmetry-breaking component
in the initial condition for the self-energy [11–13] and to check
whether this component evolves into a macroscopic value as
the RG flow is integrated. A disadvantage of this scheme is
that the order parameter field and its fluctuations do not appear
explicitly and that one even has to invest some effort to recover
simple mean-field results.

0953-8984/08/075208+09$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/7/075208
http://stacks.iop.org/JPhysCM/20/075208


J. Phys.: Condens. Matter 20 (2008) 075208 A Sinner et al

Another possibility for extending the FRG flow equations
for the irreducible vertices to the broken symmetry phase was
proposed in [14] (see also [15]). The basic idea is to augment
the hierarchy of flow equations for the vertices by an additional
equation for the flowing order parameter, which is obtained
from the requirement that, at each stage of the RG flow, the
vertex with one external leg vanishes identically. The purpose
of this work is to show how this strategy works in practice. For
simplicity, here we shall consider a simple classical scalar ϕ4-
theory, describing the critical behavior of the Ising universality
class; generalizations of our method to quantum systems are
straightforward. For example, this method has recently been
used to study superconductivity in the attractive electron gas,
where the flow equation for the order parameter is equivalent to
a generalized BCS (Bardeen–Cooper–Schrieffer) gap equation
including fluctuation corrections [16].

Apart from showing how symmetry breaking can be
taken into account in the field expansion, in this work we
present two additional new results: on the one hand, we
propose a simple truncation of the exact hierarchy of the
flow equations for the irreducible vertices in the broken
symmetry phase which yields the full momentum dependence
of the self-energy �(k), interpolating between the perturbative
regime for large momenta k ≡ |k| and the critical regime
for k → 0. Different strategies for calculating the k-
dependence of the self-energy (and, more generally, the
momentum dependence of the higher-order vertices) has
recently been developed in [17] and in [18]. On the other
hand, in this work we present an approximate calculation of
the two-parameter scaling function σ−(kξ, k/kc) describing
the scaling of the self-energy of the system slightly below
the critical temperature Tc. Here ξ is the order parameter
correlation length, and kc is the Ginzburg scale, which remains
finite at the critical point [19]. The corresponding scaling
function σ+(kξ, k/kc) in the symmetric phase (i.e. for
temperature T > Tc) has recently been discussed in [20].
The fact that the Ginzburg scale kc appears in the scaling
of thermodynamic variables has been discussed in several
recent works [21, 22, 4], but apparently has been ignored
in the older RG literature [23–25]. For models with weak
interactions, a universal regime, covering complete crossover
from the vicinity of the Gaussian fixed point to the vicinity of
the Wilson–Fisher-fixed point, exists which can be described
completely within a two-parameter scaling theory [21, 22, 4].
For the weakly interacting Bose gas at criticality, the one-
parameter scaling function σ∗(k/kc) = σ−(∞, k/kc) has
been calculated in [26, 27, 17, 18]. However, the full
implications of a finite-scale kc at criticality and the resulting
two-parameter scaling theory of the correlation function away
from criticality has only recently been examined [20]. The
field expansion of the FRG allows us to study the complete
momentum dependence of correlation functions and is thus
ideally suited to exploring the extended universality near the
critical temperature Tc.

The structure of the paper is as follows. In section 2
we formulate the exact FRG flow equations for the running
order parameter M� and the momentum-dependent self-energy
��(k). Guided by the LPA, in section 3 a truncation

scheme of the hierarchy of flow equations for the irreducible
vertices in the broken symmetry phase is introduced, which
allows us to calculate the momentum-dependent self-energy
�(k). In section 4 we derive the two-parameter scaling
function for the self-energy using different approximations.
We end in section 5 with a brief summary and mention further
applications of our method.

2. Exact RG flow equations in the broken symmetry
phase

Our starting point is the following classical action,

S[ϕ] =
∫

dDr

[
1

2
(∇ϕ)2 + r�0

2
ϕ2 + u�0

4! ϕ4

]
, (1)

where an ultraviolet cutoff �0 is implicitly understood. In the
broken symmetry phase the Fourier transform ϕk has a finite
vacuum expectation value,

ϕk = ϕ0
k + �ϕk, ϕ0

k = (2π)Dδ(k)M, (2)

with 〈�ϕk〉 = 0. By substituting this expression into (1) and
expanding in powers of �ϕk, we also generate terms involving
one and three powers of �ϕk. Demanding that the vertex �

(1)
�0

associated with the term linear in �ϕk should vanish, we obtain
the magnetization in the Landau approximation,

M�0 =
{

0 for r�0 > 0√−6r�0/u�0 for r�0 < 0.
(3)

This will serve as the initial condition for the flow equation of
the order parameter in our functional RG approach.

To derive an exact hierarchy of flow equations for the
vertices of our model, we introduce a momentum cutoff �

into the free propagator separating fluctuations with small
momenta |k| � � from those with large momenta |k| � �.
Differentiating the generating functional � of the one-particle
irreducible vertices with respect to � and expanding � in
powers of the fields, we obtain a formally exact hierarchy
of FRG flow equations for the vertices [3]. To take into
account symmetry breaking, we follow the approach proposed
in [14] and demand that, for all values of �, the flowing
vertex �

(1)
� associated with the term linear in the fluctuation

�ϕk vanishes. This yields a renormalization group equation
for the flowing order parameter M�. We would like to
calculate the true order parameter M = lim�→0 M� and
the true momentum-dependent single-particle Green function
G(k) = lim�→0 G�(k), which we parameterize in terms of an
irreducible self-energy �(k),

G(k) = 1

k2 + �(k)
. (4)

For our purpose it is convenient to include the term
proportional to r�0 in (1) in the definition of the self-energy. In
the broken symmetry phase, the initial condition for the self-
energy at scale � = �0 is then

��0(k) = r�0 + u�0

2
M2

�0
= u�0

3
M2

�0
= −2r�0 , (5)

2
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where M�0 is given in (3). As we reduce the cutoff, the
evolution of the self-energy is determined by the following
exact RG flow equation [14, 28],

∂���(k) = −1

2

∫
dDk ′

(2π)D
Ġ�(k′)�(4)

� (k′,−k′,k,−k)

−
∫

dDk ′

(2π)D
Ġ�(k′)G�(k′ + k)

× �
(3)
� (k,−k − k′,k′)�(3)

� (−k′,k + k′,−k)

+ (∂�M�)�
(3)
� (k,−k, 0), (6)

while the flowing order parameter M� satisfies [14]

(∂�M�)��(0) = −1

2

∫
dDk

(2π)D
Ġ�(k)�

(3)
� (k,−k, 0). (7)

The flow equations for the three-point vertex �
(3)
� (k1,k2,k3)

and the four-point vertex �
(4)
� (k1,k2,k3,k4) in the presence of

symmetry breaking have been written down diagrammatically
in [14]. In the present work we shall not need these equations.

In the broken symmetry phase the appropriate choice of
the cutoff procedure is a delicate matter. The simplest choice
is perhaps a sharp cutoff in momentum space, where the
propagator is, for |k| < �0, given by [3]

G�(k) = �(|k| − �)

k2 + ��(k)
, (8)

and the corresponding single-scale propagator is

Ġ�(k) = − δ(|k| − �)

�2 + ��(k)
. (9)

While in the symmetric phase the sharp cutoff is very
convenient [3, 17], it leads to technical complications in the
broken symmetry phase (see the discussion after (36) below).
These can be avoided if we use a smooth cutoff procedure,
which we implement via an additive regulator R�(k) in the
inverse propagator [5]. The cutoff-dependent propagator is
then

G�(k) = 1

k2 + ��(k) + R�(k)
, (10)

and corresponding single-scale propagator is

Ġ�(k) = [−∂�R�(k)]G2
�(k). (11)

At this point it is not necessary to specify the cutoff function
R�(k) completely, except that we require it to be of the form1,2

R�(k) = (1 − δk,0)�
2 Z−1

l R(k2/�2), (12)

1 As discussed in [14], it is convenient to choose the free propagator such
that the product of the inverse free propagator and the order parameter field
vanishes, [G0

�(k)]−1ϕ0
k = 0. The factor of 1 − δk,0 in (12) is introduced to

satisfy this condition. Without this factor, the right-hand side of (7) would
contain an additional term ∂�[R�(0)M�]. Because the RG eliminates only
modes with k 	= 0, the projector 1 − δk,0 does not affect the RG flow at any
finite k, while the fluctuation of the zero mode �ϕk=0 can be ignored in the
thermodynamic limit [14].
2 Our factor Zl is the inverse of the corresponding quantity Zk introduced
in [5].

where R(x) is some dimensionless function satisfying
R(∞) = 0 and R(0) = 1. The inverse of the flowing
wavefunction renormalization factor is given by

Z−1
l = 1 + ∂��(k)

∂k2

∣∣∣∣
k2=0

, (13)

where l = − ln(�/�0). The introduction of Z−1
l in (12)

is necessary to preserve the re-parametrization invariance of
physical quantities under a rescaling of the fields [5] (see
footnote 2). For explicit calculations we shall use the Litim
cutoff [29],

R(x) = (1 − x)�(1 − x). (14)

Another popular choice is [5]

R(x) = x

ex − 1
, (15)

which has the advantage of being analytic, but leads to more
complicated integrals.

3. Truncated flow equation for the momentum-
dependent self-energy

The right-hand side of (6) depends on the vertices �
(3)
� and

�
(4)
� with three and four external legs, which satisfy more

complicated flow equations [14, 28] involving higher-order
vertices. Keeping in line with the derivative expansion for the
effective action [5], we truncate the hierarchy as follows [14]:

��(0) ≈ u�

3
M2

�, (16a)

�
(3)
� (k1,k2,k3) ≈ u�M�, (16b)

�
(4)
� (k1,k2,k3,k4) ≈ u�. (16c)

This truncation of the field expansion is motivated by the
LPA with quartic approximation for the effective potential Ueff,
where one approximates the generating functional � by [5]

�[ϕ] ≈
∫

dDrUeff[ϕ2(r)], (17)

with
Ueff[ϕ] ≈ u�

4!
[
ϕ2 − M2

�

]2
. (18)

The completely local character of all correlations in the LPA is
known to be a surprisingly good approximation in the scaling
regime close to criticality [5]. Outside the critical regime
the LPA fares less well and, in general, cannot reproduce
the structure known from perturbation theory (in the case
considered here, only the leading order from perturbation
theory will be reproduced). The LPA combined with a
derivative expansion converges best if one expands around the
local minimum of Ueff; see [30]. The condition that M� is the
flowing minimum leads to a flow equation for M�, which in
the field expansion leads to (16a)–(16c). In this truncation, the
exact flow equation (7) for the order parameter reduces to

∂�M2
� = −3

∫
dDk

(2π)D
Ġ�(k), (19)

3
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while our flow equation (6) for the self-energy becomes

∂���(k) = u�

2

∫
dDk ′

(2π)D
Ġ�(k′) + u�

2
∂�M2

�

− u2
�M2

�

∫
dDk ′

(2π)D
Ġ�(k′)G�(k′ + k)

= −u�

∫
dDk ′

(2π)D
Ġ�(k′)

− u2
�M2

�

∫
dDk ′

(2π)D
Ġ�(k′)G�(k + k′). (20)

By demanding that the flow of ��(0) is consistent with our
truncation (16a), we obtain the flow equation for the effective
interaction,

∂�u� = −3u2
�

∫
dDk

(2π)D
Ġ�(k)G�(k). (21)

The above equations (19)–(21) form a closed system of
coupled integro-differential equations for the order parameter
M�, the effective interaction u�, and the momentum
dependent self-energy ��(k). In contrast to the LPA, these
equations can be used to calculate the full k-dependence of
�(k). Our truncation is similar in spirit but not identical
to the more elaborate truncation proposed in [18], where the
LPA was also used as a guide to propose a truncation of
the hierarchy of flow equations for the momentum-dependent
vertices generated in the field expansion. However, unlike our
equation (6), the flow equation for the self-energy proposed by
Blaizot et al [18] does not involve the flowing order parameter,
because these authors approach the critical point using an
expansion around the symmetric state.

At this point it is convenient to rescale all quantities to
reveal their scaling dimensions. We define dimensionless
momenta q = k/� and the dimensionless coupling constants

ul = KD Z 2
l �

D−4u�, (22)

M2
l = M2

�

Zl KD�D−2
, (23)

which are considered to be functions of l = − ln(�/�0). Here
KD is defined by

KD = D

(2π)D
= 21−D

π D/2�(D/2)
, (24)

where D is the surface area of the D-dimensional unit sphere.
We also define the rescaled exact propagator,

Gl(q) = �2

Zl
G�(k)

= 1

Zlq2 + �
(2)
l (q) + R(q2)

, (25)

and the corresponding single-scale propagator

Ġl(q) = Ṙl(q)G2
l (q), (26)

where

Ṙl(q) = − Zl

�
∂� R�(k) = −(2−ηl)R(q2)+2q2 R′(q2). (27)

Here R′(x) = dR(x)/dx and ηl = −∂l ln Zl is the flowing
anomalous dimension. For the Litim cutoff, R′(x) = −�(1 −
x), so that

Ṙl(q) = [−2 + ηl(1 − q2)]�(1 − q2). (28)

The rescaled propagator (25) depends on the rescaled
irreducible self-energy,

�
(2)
l (q) = Zl

�2
��(k). (29)

By construction, the constant part of the rescaled self-energy is

�
(2)
l (0) = ul

3
M2

l = Zl

�2

u�

3
M2

�. (30)

The flow of �
(2)
l (0) is thus determined by the flow of M2

l and
ul , which in our truncation is given by

∂l M
2
l = (D − 2 + ηl)M2

l + 3
∫

q

Ġl(q), (31)

∂l ul = (4 − D − 2ηl)ul + 3u2
l

∫
q

Ġl(q)Gl(q), (32)

where
∫

q
= −1

D

∫
dDq . To calculate ηl , we need the

momentum-dependent part of the rescaled self-energy,

γl(q) = �
(2)
l (q) − �

(2)
l (0), (33)

which satisfies

∂lγl(q) = (2 − ηl − q · ∇q)γl(q) + γ̇l(q), (34)

where

γ̇l(q) = u2
l M2

l

∫
q′

Ġl(q
′)[Gl(q

′ + q) − Gl(q
′)]. (35)

The flowing anomalous dimension is then given by

ηl = ∂γ̇l(q)

∂q2

∣∣∣∣
q2=0

. (36)

The reason why using a sharp cutoff in the broken symmetry
phase leads to technical complications is that, in this case, the
expansion of the integral (35) for small q would start with
a non-analytic term proportional to |q|, which requires the
introduction of an additional relevant coupling constant [17].
On the other hand, with the Litim cutoff (14) or the analytic
cutoff (15), the leading term in the expansion of γ̇l(q) is
proportional to q2. In this case the expansion of the right-
hand side of (35) for small q yields for the flowing anomalous
dimension

ηl = −u2
l M2

l

∫
q

Ġl(q){G2
l (q)[1 + R′(q2)]

+ q2

D
[2G2

l (q)R′′(q2) − 4G3
l (q)[1 + R′(q2)]2]}, (37)

where R′′(x) = d2 R(x)/dx2. For the Litim cutoff, R′′(x) =
δ(1 − x).

4
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Figure 1. Typical non-critical flow of the coupling parameters M2
l

and ul obtained from (41) and (42) in D = 3.

4. Two-parameter scaling in the broken symmetry
phase

4.1. Truncation with only marginal and relevant couplings

In the simplest self-consistent approximation, we expand the
momentum-dependent part γl(q) of the two-point vertex on the
right-hand side of our flow equations (31), (32), (34) to first
order in q2. Since, by definition,

Zl = 1 − ∂�
(2)
l (q)

∂q2

∣∣∣∣∣
q2=0

= 1 − ∂γl(q)

∂q2

∣∣∣∣
q2=0

, (38)

this amounts to approximating the propagator on the right-hand
side of the flow equations (31), (32), (34) by

Gl(q) ≈ 1

q2 + ρl + R(q2)
, (39)

where
ρl = �

(2)
l (0) = ul

3
M2

l , (40)

see (30). The resulting system of flow equations for
the coupling constants M2

l and ul , together with the
flow equation ∂l Zl = −ηl Zl for Zl , are equivalent to
the quartic approximation for the effective potential with
wavefunction renormalization [5]. Using the Litim cutoff (14),
equations (31) and (32) become

∂l M
2
l = (D − 2 + ηl)M2

l − 6(2 + D − ηl)

D(D + 2)
G2

l (0), (41)

∂lul = (4 − D − 2ηl)ul − 6(2 + D − ηl)

D(D + 2)
u2

l G3
l (0), (42)

where Gl(0) ≈ [1 + ρl ]−1 is the rescaled propagator at
zero momentum. Moreover, with the Litim cutoff the flowing
anomalous dimension (37) is simply

ηl = 1

D
u2

l M2
l G4

l (0). (43)

Equations (41)–(43) form a closed system of differential
equations for M2

l , ul and ηl which can easily be solved

Figure 2. Qualitative flow diagram for the couplings ul and M2
l . The

arrows sketch a nearly critical flow, with the size of the arrows
representing the velocity of the flow. The dots mark the Gaussian
fixed point (G) and the Wilson–Fisher fixed point (WF).

numerically. To find the flow along the critical surface, we need
to fine tune carefully the initial values u0 and M2

0 . A typical
flow of the rescaled parameters as a function of l is shown in
figure 1, while in figure 2 we show the flow schematically in
the (ul, M2

l )-plane. The Wilson–Fisher fixed point in D = 3
is, in this approximation, at u∗ ≈ 0.942 and M2∗ ≈ 1.022.
As can be seen in figure 2, the couplings initially flow very
slowly and stay close to their initial values in the vicinity of
the Gaussian fixed point. At a characteristic scale lc they are
rapidly attracted by the Wilson–Fisher fixed point, where the
flow is again almost stationary. Finally, at the scale l∗, all non-
critical RG trajectories rapidly move away from the Wilson–
Fisher point and the l-dependence of the couplings ul and
M2

l is determined by their scaling dimensions, ul ∝ eεl and
M2

l ∝ e(D−2)l , where ε = 4 − D; the flow of the unrescaled
couplings u� and M2

� then stops.
What determines the two characteristic scales lc and l∗?

The momentum scale kc = �0e−lc associated with lc measures
the size of the Ginzburg critical region. For small initial values
of u0, the logarithmic scale lc is given by [22, 17, 19]

lc ≈ 1

ε
ln

(u∗
u0

)
, (44)

where u∗ is the value of ul at the Wilson–Fisher fixed point.
This scale can be derived from (41) and (42) by approximating
Gl(0) ≈ 1 and ηl ≈ 0. In the intermediate regime lc � l � l∗
the flowing M2

l can then be replaced by a constant M2
l ≈

M2∗ = 6/[D(D − 2)], while for all l the solution of (42) can be
approximated by

ul

u∗
≈ 1

eε(l−lc ) + 1
, (45)

where u∗ = Dε/6. The numerically obtained flow shown in
figure 1 further reveals that the scale lc is also characteristic for
the l-dependence of M2

l .
Non-critical flows which describe the system at T < Tc

eventually obey M2
l /M2∗  G2

l (0) and u∗/ul  G3
l (0). In

that case, the solution for M2
l and ul depend exponentially on

5
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l, corresponding to trivial scaling. The unrescaled variables
u� and M2

� then approach finite limits, and also the physical
correlation length ξ , which is defined via

ξ−2 = lim
�→0

[Z���(0)], (46)

remains finite. The scale l∗ in figure 1 is related to ξ via
ξ−1 = �0e−l∗ , or equivalently

2l∗ = − ln

[
lim

l→∞
e−2l�

(2)
l (0)

]
. (47)

From the linearized flow around the Wilson–Fisher fixed
point we obtain, in D = 3, the critical exponents ν ≈ 0.553
and η ≈ 0.099. Very similar results are obtained using the
analytic cutoff (15). The poor comparison of our results to
the established values ν = 0.64 and η = 0.044 (see [5])
can be traced to the low-order truncation of our effective
potential (18); see [30, 31]. Close to D = 4 we obtain in
the leading-order ε-expansion η ∼ ε2/12 and ν ∼ 1/2+ ε/12.
While the result for ν is correct, the value for η compares badly
with the known expansion η ∼ ε2/54. This clearly shows the
limitations of a low-order effective potential approximation.

4.2. FRG enhanced perturbation theory

So far, we have truncated the self-energy retaining only its
marginal and relevant parts. This is a good approximation
for small momenta k. On the other hand, for large k
this approximation cannot correctly reproduce the momentum
dependence of the self-energy which arises from perturbation
theory. To leading order in the relevant dimensionless
bare coupling ū0 = u�0ξ

4−D , the perturbative momentum
dependence of �(k) in the broken symmetry phase is given
by [20]

�(k) − �(0) = ξ−2�σ−
0 (kξ), (48)

with

�σ−
0 (x) = 3ū0

2
[χ(0) − χ(x)] + O(ū2

0), (49)

where

χ(p) =
∫

dD p′

(2π)D

1

[p′2 + 1][(p′ + p)2 + 1] . (50)

Equations (48)–(50) are only accurate sufficiently far away
from the critical point where ξ and the relevant dimensionless
coupling ū0 = u�0ξ

4−D are small.
We now present an improved approximation for the

momentum-dependent self-energy which we call FRG en-
hanced perturbation theory, since it embeds the perturbative
expansion into a functional renormalization [32] such that it
reproduces exactly the leading-order perturbative behavior for
large k. However, in contrast to perturbation theory, FRG en-
hanced perturbation theory does not suffer from any divergen-
cies; it yields an explicit description of the entire crossover
to the critical regime and gives reasonable results even at the
critical point.

Quite generally, the physical self-energy can be written as
an integral over the entire RG trajectory [20],

�(k) − �(0) = �2
0

∫ ∞

0
dl e−2l+∫ l

0 dτ ητ γ̇
(
elk/�0

)
, (51)

where �(0) = Z−1ξ−2. In general, the expression for
the inhomogeneity γ̇ (q) will also depend on the momentum
dependence of the three- and four-point irreducible vertices,
as can be inferred from (6). To make progress, we employ
the truncation (16a)–(16c) which leads to the approximation
(35) for the inhomogeneity γ̇ (q). Only the momentum-
independent parts of the three- and four-point vertices enter
and γ̇ (q) is then completely determined by the self-energy and
the order parameter alone. While this greatly simplifies the
calculation of the self-energy since it leads to a closed set of
equations, solving (51) remains non-trivial, since the solution
for the self-energy must be determined self-consistently. The
FRG enhanced perturbation theory provides for a non-self-
consistent approximation to the solution of (51). In the FRG
enhanced perturbation theory, the calculation of the subtracted
inhomogeneity γ̇ (q) via (35) is simplified by keeping only the
first two terms in a momentum expansion of the self-energy.
This amounts to the substitution

�
(2)

l (q) → �
(2)

l (0) + (1 − Zl)q
2 (52)

and the approximation (39) for the propagator on the right-
hand side of (35). Within this approximation, the flows of
M2

l , ul , and ηl are determined from (41)–(43). A similar
truncation strategy has been adopted in [17] for the symmetric
phase of the O(2)-model, and in [33] to calculate the spectral
function of the Tomonaga–Luttinger model. A comparison
with the completely self-consistently determined self-energy
is presented at the end of this section, where we show that the
error arising from the non-self-consistency of the FRG solution
is extremely small. Perturbation theory is recovered when the
flow of the running couplings is approximated by their trivial
l-dependence arising from their scaling dimensions. The self-
energy can now be expressed in terms of a two-parameter
scaling function,

�(k) = k2
c σ

−(x, y), (53)

with x = kξ and y = k/kc. The ratio of these variables is then
x/y = el∗−lc . If we introduce

�σ−(x, y) = σ−(x, y) − k2
c �(0) = σ−(x, y) − y2/Z x2,

(54)
this leads to

�σ−(x, y) =
∫ ∞

0
dl e−2(l−lc )+

∫ l
0 dτ ητ γ̇l(e

l−lc y)

= y2
∫ ∞

ye−lc

dp p−3 Z−1
lc+ln(p/y)γ̇lc+ln(p/y)(p), (55)

where we substituted p = yel−lc and used Zl = e− ∫ l
0 dτ ητ . The

asymptotic behavior of γ̇l(q) for small q is γ̇l(q) ≈ ηlq
2. For

large q it approaches a constant which, using the Litim cutoff,
is

lim
q→∞ γ̇l(q) ≈ 2u2

l M2
l G3

l (0)
(2 + D − ηl)

D(D + 2)
. (56)

6



J. Phys.: Condens. Matter 20 (2008) 075208 A Sinner et al

Figure 3. Typical behavior of the two-parameter scaling function
�σ−(x, y) defined in (55) for x = el∗−lc y. The initial coupling
parameters are u0 = 0.005 and M2

0 = 1.948 2092, which yields
lc � 5.23 and l∗ � 11.29.

In D = 3 the function γ̇l(q) can be calculated analytically for
the Litim cutoff; the result is given in the appendix. At the
critical point, x → ∞ since the correlation length diverges, so
the scaling function reduces to

�σ−(∞, y) = σ−(∞, y) = σ∗(y). (57)

The asymptotic behavior of the scaling function for both very
small and very large y follows directly from (55). For y � 1,
i.e. in the critical long wavelength regime [20], the lower
limit of integration may be replaced by zero and all coupling
parameters may be replaced by their fixed point values. Then
we find

σ∗(y) ≈ AD y2−η, (58)

where η is the fixed point value of ηl and

AD =
∫ ∞

0
dp pη−3γ̇∗(p), (59)

with γ∗(p) = liml→∞ γl(p). In D = 3 we obtain numerically
A3 ≈ 1.075. In the critical long wavelength regime y  1,
one may approximate all couplings by their initial values. The
scaling function then approaches the constant value

σ∗(y) ≈ 2

D
u2

0 M2
0 G3

0(0). (60)

Such a constant plateau is expected from the structure of the
truncation employed. In fact, for k  kc, one expects that
the momentum dependence of the self-energy is that of lowest-
order perturbation theory; see the discussion at the beginning
of this subsection. However, an effective ultraviolet cutoff is
now provided by k−1

c which regularizes the theory in place of
the correlation length ξ , which is infinite at criticality. While
this is indeed the leading-order correction to the self-energy
in an expansion in powers of the bare interaction strength,
the correct form of the self-energy should further display a
ln(k/kc) dependence at large k with a pre-factor which is
quadratic in the bare interaction [17, 20]. The reason for the
absence of such a term in the present approximation is that

Figure 4. Comparison of two different approximations of the
self-energy at criticality, as discussed in the text: self-consistent
numerical solution σ−

nu(∞, k/kc) of (19)–(21) and solution
σ−(∞, k/kc) based on the substitution (52) on the right-hand sides
of these flow equations.

our truncation for the four-point vertex in (16c) does not take
vertex corrections into account. In the macroscopically ordered
regime kξ � 1, we find that �(k) − �(0) vanishes as k2, as
can be seen in figure 3.

For the present model, it is of course possible to calculate
the solution of the coupled integro-differential equations (19)–
(21) exactly without any further approximations. One obtains
completely self-consistent solutions for the flow of the self-
energy ��(k) and the order parameter if the truncation of
the momentum dependence of �� and G� on the right-
hand sides of (19)–(21) using the substitution (52) is omitted.
A comparison of the completely self-consistent solution
σ−

nu(∞, y) for the scaling function with the scaling function
σ−(∞, y) obtained within the FRG enhanced perturbation
theory, i. e. with the help of the substitution (52) on the right-
hand sides of (19)–(21), is shown in figure 4. Obviously, the
relative error due to the substitution (52) is remarkably small,
so we conclude that our substitution (52) is quite accurate.

Of course, one could easily improve the approximations
presented here. A straightforward extension would be to
truncate the effective potential Ueff in (17) at some higher order
n > 2,

Ueff[ϕ2] ≈
n∑

m=2

u(m)
�

(2m)!
[
ϕ2 − M2

�

]m
. (61)

To arrive at the flow equations of the parameters u(2)
� , . . . , u(n)

� ,
one would need to take into account the flow equation of
the lowest n vertices of a field expansion. We have done
so up to n = 5; a significant improvement of the critical
exponents η and ν in the Ising model would, however,
require approximately n = 10, as is known from previous
investigations of the derivative expansion [31]. Note that
our FRG enhanced perturbation theory can also be adopted if
arbitrarily higher orders in n are included. This is because,
within our approach, the flow of the coupling constants that
parameterize the local potential depends only on the lowest-
order momentum expansion of the self-energy and can be
calculated exactly as in the usual derivative expansion [31].

7
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Once the flow of the local potential is known, the higher-order
momentum dependence of the self-energy can be determined.
Of course, not all models have a structure as simple as the
one discussed here, which permits us to include arbitrarily
high orders of the local potential. One may wonder whether
our approach is also useful for describing more complicated
systems. It is certainly expected to be useful in non-critical
interacting systems, such as interacting bosons in two or three
dimensions, where a low-order truncation of the effective
action should suffice [34]. An accurate description of the
momentum-dependent self-energy of more complicated and
possibly critical systems, such as frustrated spin models [6],
is a very challenging task which we have not yet attempted.
While including all orders of the local potentials would then be
prohibitive, a low-order truncation might yet be qualitatively
correct.

5. Summary and conclusions

Let us summarize the three main results of this work:

(i) We have demonstrated how symmetry breaking can be
included in the exact hierarchy of FRG flow equations
for the irreducible vertices within the framework of the
field expansion, using the approach from [14]. The basic
idea is to require that the vertex with one external leg
vanishes identically for all values of the flow parameter,
which yields an additional flow equation for the order
parameter. Our method differs from those employed
in [11–13], which do not explicitly include a flow equation
for the order parameter.

(ii) Guided by the LPA, we have proposed a simple truncation
of the FRG flow equation for the momentum-dependent
self-energy �(k), which yields a reasonable interpolation
between the perturbative regime for large momenta and
the critical regime for k → 0. We have also pointed out
that a sharp �-function cutoff (which is still very popular
in the condensed matter community) is not suitable
for analyzing the broken symmetry phase, because it
generates a non-analytic term proportional to |k| in the
two-point vertex for momentum scales below the RG
cutoff �.

(iii) Using the above truncation, we have calculated the two-
parameter scaling function σ−(kξ, k/kc) describing the
scaling of the self-energy in the broken symmetry phase
slightly below the critical temperature. Similarly to the
case T > Tc discussed in [20], the scaling function
depends on two parameters, involving the correlation
length ξ and the Ginzburg scale kc. The latter remains
finite at the critical point and measures the size of the
critical region.

It is straightforward to generalize the method described
here to study spontaneous symmetry breaking in quantum
mechanical many-body systems. For example, our approach
can be used to obtain fluctuation corrections to the BCS
gap equation in the attractive Fermi gas [16]. Note that,
beyond the BCS approximation, the superconducting order

parameter should be distinguished from the off-diagonal self-
energy associated with the single-particle Green function, so
it is important to introduce both quantities into the FRG as
independent parameters. We are currently using our method to
study the interacting Bose gas [34], where a truncation similar
to the one discussed here yields corrections to the Bogoliubov
mean-field approximation for the diagonal and off-diagonal
self-energies which are consistent with the Hugenholtz–Pines
theorem [35].
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Appendix. Analytical form of γ̇l(q) in three
dimensions

Using the Litim cutoff [29] given in (14) we can rewrite the
function γ̇l(q) defined in (35) as

γ̇l(q) = u2
l M2

l G3
l (0)

∫
q′

Ṙl(q
′)

× �
(|q′ + q|2 − 1

) 1 − |q′ + q|2
|q′ + q|2 + ρl

, (A.1)

where Ṙ(q) is defined in (28). In D = 3 the integration
in (A.1) can be performed exactly. We find

γ̇l(q) = �(2 − q)γ̇ <
l (q) + �(q − 2)γ̇ >

l (q), (A.2)

where the functions γ̇ <
l (q) and γ̇ >

l (q) are defined by

γ̇ <
l (q) = M2

l u2
l G3

l (0)

{
Al(q) + Bl(q) ln

[
ρl + (1 + q)2

ρl + 1

]

− Cl(q)

[
arctan

(
1√
ρl

)
− arctan

(
1 + q√

ρl

)]}
, (A.3)

γ̇ >
l (q) = M2

l u2
l G3

l (0)

{
Dl(q) + El(q) ln

[
ρl + (1 + q)2

ρl + (1 − q)2

]

+ Cl(q)

[
arctan

(
1 − q√

ρl

)
+ arctan

(
1 + q√

ρl

)]}
, (A.4)

with

Al(q) = 1

480
{60[1 + ρl][4 − ηl(1 + ρl)]

− 30q[4 − ηl + 4ρl(3 − 2ηl) − 7ηlρ
2
l ] + 20ηl q

2

× [5 + 9ρl ] − 5q3[4 + ηl(17 + 25ρl)] − 2ηl q
5}, (A.5)

Bl(q) = 1 + ρl

16q
{4[q2 − ρl − 1] + ηl

× [ρ2
l + 2ρl(1 − 3q2) + (q2 − 1)2]}, (A.6)

Cl(q) =
√

ρl

2
(1 + ρl)[2 − ηl(1 + ρl − q2)], (A.7)

8
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Dl(q) = ηl

5
− 1

12
[ηl(5 + ρl) − 8]

− (1 + ρl)[1 − ηl

4
(2 + 3ρl − q2)], (A.8)

El(q) = 1 + ρl

16q
{ηl − 4 + ρl [ηl(2 + ρl) − 4]

− 2q2[3ηlρl + ηl − 2] + ηlq
4}. (A.9)
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